TWO-DIMENSIONAL NONSTATIONARY SOLUTIONS
OF THE EQUATIONS OF MAGNETOHYDRODYNAMICS

V. 8. Imshennik UDC 533.95:538.4

We consider a simple two-dimensional plane solution of the equations of magnetohydrodynamics given
earlier in general form by A. G. Kulikovskii [1]. The plane cumulation of material near a magnetic neutral
line is a special case of this solution and is of interest for various fast processes in a plasma such as the
z-pinch and solar flares [2].

There has recently been an increased interest in two-dimensional magnetohydrodynamic motions of
matter in connection with 2 number of intensively studied physical and astrophysical phenomena, for exam-
ple, the plasma focus in a z-pinch and solar chromospheric flares. It is significant also that as a conse-
quence of the progress of computational mathematics all these phenomena have been studied largely by nu~
merical methods. Thus it is useful to examine those few analytic solutions of two-dimensional magneto-
hydrodynamics which have even an indirect relation to actual magnetohydrodynamics problems in a com-~
plete physical formulation, We examine a certain class of simple solutions of the equations of magnetohydro-
dynamics for two-dimensional plane nonstationary motion, Two subclasses of solutions with completely
different physical meanings can be distinguished. The subclass including solutions with a cumulative plane
compression of material near a magnetic neutral line is of particular inferest.

1. Let us consider the two-dimensional plane nonstationary problem of magnetohydrodynamics. Sup-
pose the motion of the material occurs in the x,y plane, i.e., the z component of the velocity v, = 0. If in
addition there is no z component of the magnetic field, B, = 0, and all quantities depend on the coordinates
x and y and the time t, then only the z components of the electric field E, and the current density j, can be
different from zero. Suppose further that Ohm's law has its simplest form

j=o(E+ct[v-B)). 1.1)
In this formulation of the problem the electromagnetic field can be described by a single component

of the vector potential A, A, = A:
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The scalar potential ¢ is set equal to zero as a consequence of the gauge invariance of the electro-
magnetic field {3]. Then if the conductivity of the material ¢ does not depend on the spatial coordinates, the
magnetohydrodynamic equations can be written in the form

dA c?

dv 1
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(1.3)
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where the functions A, v, and p depend on x, y, and t. The equation for the component of the vector potential
A in (1.3) is identical with the corresponding equation in [2] if (1.1) is taken into account,

2. The system of equations (1.3) has a certain class of simple solutions noted by A. G. Kulikovskii [1].
We assume that the pressure p is a function only of the density p. The conductivity of the material ¢, which
in general depends on the pressure and density, then becomes a function only of the density. Of course this
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assumption is compatible with Egs. (1.3) only if the density is independent of the spatial coordinates. We
consider the class of solutions '

A=rarxr—+a, v=Ur, p=p@), p=plp) 2.1

where r = (x,y) is the radius vector, and the matrices a, = || &5 ) and U= || Uy d G j=1,2). We note that
ay3 = ay31. The time dependence of the nine functions a5 (t), ugj (t), at), and p ) (1, j =1, 2) is determined by a
system of ordinary differential equations obtained by substltutmg the expressions from (2.1) into the original
system (1.3). In matrix form these equations are

, Spa, ,
U+ U=— np+ a., p'=—58pUp 2.2)
o/ +a* +2(alU 4 U*a,*) =0, o =~ —Spa,,

Here Spa,; and SpU are respectively the traces of the matrices a, and U; an asterisk denotes the trans-
pose of a matrix, and the primes indicate differentiation with respect to the time.

It is clear from Eqgs. (2.2) that the case of finite conductivity of the material is only very slightly dif-
ferent from the limiting case of infinite conductivity., When ¢ < «,the solution contains an additional func-
tion () determined from the last equation of (2.2) after solving the rest of the system. In the limiting case
when ¢ — o, @ =0, Thus according to (1.2) only an addition to the z component of the electric field results
from taking account of the finite conductivity of the material. The magnetic field and the motion of the ma-
terial are the same as in the limiting case.

It is expedient to write Eqgs. (2.2) in dimensionless form, To do this we note that the initial conditions
of the problem, which are obtained from (2.1) for t = 0, contain two dimensional constants: pg, the initial
density of the material, and a = ayy,* the first coefficient in the quadratic form for the function A. Tt is
easy to see that the combination

“ly={(Rpe)agt 2.3)
has the dimensions of time. Then we obtain from (2.2) the dimensionless equations for the dimensionless
functions

Gy = ag 'aij, By =ty P =0g P . 2.4)
We simplify the notation for the dimensionless functions in (2.4) by omitting the bars over the quanti-
ties. Unless specifically noted we henceforth consider the dimensionless quantities
U U = — Spasap™, p' = —SpUp

. 2.5)
a’ + a+*’ + 2 (U 4 U*a,*) =0, o' = T,5pa,

where now primes denote differentiation with respect to the dimensionless time 7 = t/t;. In (2.5) T4 = ty/t',,
with t'y =7 §2r 0/c?, where [ is an arbitrary unit of length entering into the definition of the dimensionless
function @ = a/13a,.

3. In spite of the extreme simplicity of the spatial dependence of the solution under consideration it
has an interesting physical meaning. Without exhausting all the forms of the solutions of 2.5) (determined
by six dimensionless numbers — the initial values of a; and uj;) we indicate two particular subclasses of
solutions. If the matrices U and a, in the initial condifions are diagonal (@ 5(0) =u,,(0) = 0), then according
to (2.5) they are diagonal for all 7 > 0:

Qs = Upg = Uy = 0. 8.1)
In the present case the moving material does not cross the coordinate axes and the magnetic lines of
force are perpendicular to the axes. A simplified system of equations with 7, = 0 is obtained from (2.5) by

taking account of 3.1):
P (un' + uy®) = —ay (ay + @), p (ugs” + usd?) = *‘122(_“.11 + ag),

p' 4 0 (a1 + uz) =0 ' 3.2)
an’ ++ 2ayuy; = 0, gy’ ~F 2aglisy = 0,

* Dimensional considerations [4] and the fact that the initial conditions contain only the two indicated dimen-
sional constants lead to the construction of the class of solutions written in (2.1).
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If the signs of a4, and a4, are opposite initially, the system of equations (3.2) describes the nonstation-
ary motion of material near a magnetic neutral line. The most important property of the motion is the cu-~
mulative compression of material occurring during the finite time t, ~ t,. We show the cumulative character
of the general solution of Egs. (3.2). To do this we introduce new functions ¢ and n:

ay = 7%, @y = — N2, 3.3)

We denote the initial values of £and 5 by £ j and 7y Without loss of generality we can assume that
£, n > 0. Then from the last three Eqgs, of (3.2)

P = (&N M, upy = BT up =, (3.4)

The remaining two equations of sysbem (3.2) give two second-order differential equations for £ and n:

F= e Y, W= €Y 3.5)

For £y > npand &Y > nYy it follows from Egs. (3.5) that £% > 0 and n" < 0. This clearly indicates a
further strengthening of the inequality & > n. From (3.5) the second derivatives £™ and n" do not change
sign right up to the singular point T = 7, where 1 (7¢) = 0. H £y< ngand £')< 7%, on the other hand, the
inequality £ < 7 is strengthened and a singularity occurs where £ vanishes. All other types of initial con-
ditions (£ > ng, £% < ntpor £5< 0y £7 > n'y lead to one singularity or the other depending on whether or
not the inequality of the first derivatives changes before the £ and n curves intersect.* We note that the
time of the singularity 7, is always finite since the corresponding second derivative is strictly negative.
The cumulation corresponding to the singularity of the solution demonstrated above is characterized by the
unbounded increase of p, ayy, and uyy (@as £ — 0) or of p, a,y, and uy, (@s n — 0). The cumulative compres-
sion occurs perpendicular to the y, z or x, z planes. The numerical integration of Eqs. (3.2) and the inves-
tigation of the physical properties of the solutions obtained are given in [2].

The other subclass of solutions with completely different physical properties is obtained by assuming
that in the initial conditions the diagonal elements of the matrix U are zero and that matrix a  is diagonal
as before. Then from (2.5) there follow first that the initial structure of the matrices is preserved, and

second that the remaining components are uniquely determined
@yg == Uy = Ugy = 0, Gy = Gy = @
Upp = —lyy = U, u=+V2a. -8
The physical meaning of the stationary solution (3.6) is elementary. Material rotates about the z axis
with a certain constant angular velocity, and the magnetic lines of force are concentric circles. The electric
current density corresponds to the angular velocity so that at all points of space the centrifugal and pondero-

motive forces compensate one another:
1 . dv

The identity (3.7) is easy to prove by taking account of the fact that 471'3' = ¢ curl B and using Egs. (1.2),
2.1), 2.3), 2.4), and 3.2).

4. The solution discussed is useful in investigating the plane cumulation of material near a magnetic
neutral line. In a specific magnetohydrodynamics boundary-value problem this solution can, under certain
restrictions, be used as an expansion near the neutral line. Such an expansion is particularly important when
there is a cumulative singularity of the general solution obtained by numerical methods.

The nature of the cumulative singularity is very important, particularly for the physical interpretation
of the solution. It is interesting that it is relatively simple to establish the leading terms in the time depen-
dence of all quantities close to the cumulation time 7. Substitution into the complete equations 2.5) shows

* The special case £, = 7y is not an exception since in satisfying the inequality {'g > n', at times near 7 =0
the inequalities £ > 0 and n* < 0 will hold. AIll the rest of the argument can be repeated word for word.
Actually the solution with the initial conditions £, = n,and 'y = n', turns out to be a separate case. This
solution does not have singularities and corresponds to a uniform expansion or compression of material
without the participation of ponderomotive forces (j, = 0).
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that the particular solution

i v=|
e+ = 2 ’ @.1)
SE LAY AZ/s B
Faah B Vi,
1 B A
b= A%

where A = 7o — 7 and 8 and ¥y are arbitrary constants, satisfies all the equations up to terms which are
second order in comparison with the principal terms. For the particular solution (4.1) the dimensional phys-
ical quantities of (1.2) and 2.1) behave as follows:

Uy~ A‘lx, Bx ~ A"l/i,z" BU ~ A—‘/sz

p~ A—z/a) jz -~ A“/a’ Ez ~ AJ/"xz - (4.2)

It should not be assumed in general that the cumulative solution is peculiar to subclass (3.1) and (3.2).
In a broader sense it also satisfies the complete system of equations (2.6), as does the particular solution
@.1) presented above, since nondiagonal elements of the matrices a, and U appear in (4.1).

In conclusion we note that as a result of certain transformations solution 2.1), which refers to an un-
bounded physical system, can be applied to a volume of material bounded by a cylindrical surface [5]. It is
also possible to go from (4.1) to a similar solution for an incompressible liquid found earlier [6]. In the
latter case the spatial dependence of the pressure p ~ bx? + cy? + d must be taken into account in Egs. (1.3)
and a bounded volume of material with the pressure specified on its surface must be considered.

The author thanks M. A, Leontovich and 8, I, Syrovat-skii for valuable discussions and L. V. Ovsyanni-
kov for a critique and a number of helpful comments.
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